
Scamp5d Programming Guide --- WORK IN PROGRESS v0.81

© 2019 by The University of Manchester 1

Scamp5d Programming Guide

version 0.81

This document gives an introduction to the programming of the Scamp5d system. It presents the

overview of the SCAMP-5 architecture, and various system components. It introduces the basic

concepts of the Scamp5d software programming framework, and presents examples of implementing

various common functions. The features of the Scamp5d vision system, related system control and I/O

operations are also covered. This is intended as an introduction that provides the user with the basic

understanding of the system, and enables the user to find appropriate details in the online

documentation.

1 Introduction
We will start by recalling that the main processing system that we consider here consist of the SCAMP-

5 vision chip, which contains image sensor and a powerful SIMD processor array, and the Arm Cortex

M0 processor core, which is a simple 32-bit integer microcontroller. A simplified system diagram is

shown in Figure 1.1.

Figure 1.1. Overview of the main processing resources on the Scamp5d vision system. The main program

is executed on the M0 core, which instructs the SCAMP-5 vision chip to carry out operations on image

arrays using the massively-parallel SIMD processor array.

The vision algorithms are written in C/C++ and compiled onto the M0 core. The M0 core is used to

provide interfaces to the external world, and the overall control flow of the vision algorithm. It can

also execute sequential parts of the vision algorithm, in particular some higher-level operations on the

image-derived data. The majority of vision computations, in particular the operations on images, are

executed on the SCAMP-5 chip itself. The program running on the M0 core explicitly instructs the

vision chip to carry out these operations, at specific points in the M0 code - this is done via scamp5

function calls and definitions of scamp5 kernel code.

Like a conventional CMOS image sensor, the SCAMP-5 is capable of acquiring the images (video

frames), but in addition to that, it is capable of processing them in-situ, using processing elements

adjacent to the image pixels. In general, the large arrays of data used in the image processing

algorithms do not leave the SCAMP-5 device. Instead, they are processed concurrently, using a

Scamp5d Programming Guide --- WORK IN PROGRESS v0.81

© 2019 by The University of Manchester 2

massively-parallel array of processor cores, resulting in high-speed and low-power operation. As the

M0 broadcasts the instructions to all the processors in the array, they execute operations on local

data. Eventually, the results of these computations are read-out from the SCAMP-5 vision chip.

In this programming guide we will learn how we can use this system to efficiently implement a range

of common operations that are used to construct vision algorithms.

2 SCAMP-5 Architecture
To understand the SCAMP-5 programming, it is essential to appreciate some details of its internal

architecture. The SCAMP-5 chip contains an array of 256x256 processors, one per image pixel. The

architecture of a single processor is shown in Figure 2.1. A single processor contains: six general-

purpose analog registers: A,B,C,D,E,F, thirteen binary (1-bit) registers, RF, RP, RN, RE, RW, RS, S0-S6

(some of which have special functions), special-purpose registers used for temporary storage and

inter-processor communication (NEWS), image sensing (PIX), and input (IN), an activity-control

register (FLAG), Arithmetic Logic Unit (ALU) implementing basic arithmetic and logic operations as well

as asynchronous accelerations for some spatial functions (Blur: low-pass filter, Prop: flood-fill), and

I/O communication circuits, including array selection registers (SLCT and RECT).

Figure 2.1. SCAMP-5 processing element architecture.

The processors operate with a common controller, forming a pixel-parallel SIMD processor array.

SIMD stands for Single Instruction Multiple Data, it means that the same instruction is executed

concurrently on all processors in the array, but they operate on their own data, e.g. local pixel values.

The processors can also exchange data with their direct neighbours in the array (in the North, East,

West and South directions), and can conditionally execute some instructions. SCAMP-5 chip also

includes mechanisms that allow selecting individual and groups of processors, perform some global

(array-wide) operations, and a variety of input/output schemes. These will be introduced gradually in

this document.

2.1 Pixel-Parallel Operations
To understand the programming model, it is most convenient to think about all the processors in the

array collectively as an ‘array processor’. Individual processors in the array are termed processing

elements (PE’s). The registers (local memories) in each PE form distributed memories that can store

array data. For example, registers A of all processors in the array form a register array A. This array A

Scamp5d Programming Guide --- WORK IN PROGRESS v0.81

© 2019 by The University of Manchester 3

can store a 256x256 pixels gray-level image. This view is illustrated in Figure 2.2. In the following, we

will simply refer to the register arrays A, B, C, etc. as registers.

PIX

A
B
C
…
S5

S6

 NEWS

FLAG

single
processing
element (PE)

Figure 2.2. SIMD array. Each single processor (processing element, PE) is responsible for one location in

the array, and performs operations on data stored in its local memories. As all PE’s execute the same

instructions in parallel, effectively the processor array executes array-wide operations.

The SIMD processor array can perform operations in parallel on entire data arrays. For example,

operation denoted as mov (A,B) corresponds to each processing element in the SIMD array copying

the value held in their register B to the register A. This is done in parallel in all processing elements,

therefore the operation moves the content of array B into array A. Similarly, operation add (C,A,B)

performs element-wise addition of elements of arrays A and B and puts the result in array C (see Figure

2.3).

5 2 0 0

5 2 0 0

5 2 0 0

5 2 0 0

0 0 0 0

10 10 10 10

0 0 0 0

0 0 0 0

5 2 0 0

15 12 10 10

5 2 0 0

5 2 0 0

 A B C

+ =

Figure 2.3. Instruction add (C,A,B) performs operation C=A+B on all array elements in parallel.

This array programming concept works in a way similar to code vectorisation in MATLAB or using

numPy arrays in Python, where a single operation on arrays results in element-wise computations on

their elements. However, it is worth remembering that in case of the SCAMP system, all array

elements are actually operated on concurrently in hardware, giving it high speed – for example two

256x256 arrays of numbers (e.g. two images) are added in one clock cycle.

3 Instruction Set Overview
Here the instructions available on SCAMP-5 are briefly introduced. The details can be found in the

SCAMP-5 Reference Manual document, and in the online reference documentation.

3.1 Analog Instructions
Registers A,B,C,D,E,F are called “analog” registers, due to the fact that they are implemented using

analog (continuous-valued) circuit techniques. The analog registers can store real numbers, but their

precision is limited by analog operation error and noise. This will be discussed in more detail in Section

Scamp5d Programming Guide --- WORK IN PROGRESS v0.81

© 2019 by The University of Manchester 4

4.1. The numbers stored in analog registers are in the range -128 to 127, and can represent image

pixel values, or some other continuous-valued variables.

The ALU supports the following operations on analog registers: transfer: (mov), addition (add),

subtraction (sub), sign-inversion (neg), absolute value (abs), and division-by-two (div, diva, divq).

There is no multiplication operation, except the division-by-two instructions that multiply the analog

value by 0.5 (i.e. divide the value by two). The diva and divq instructions should be normally used, as

they provide significantly better accuracy through error-compensation scheme.

Most analog instructions take two clock cycles. Error-compensated divisions take five clock cycles. It

is possible to optimise the performance using low-level microinstructions (bus, icw), but this is only

recommended for advanced users.

Some instructions put constraints on the arguments used, that need to be strictly followed, as certain

register combinations are not allowed. For example, add (A,A,B) is allowed (A=A+B) but add (A,B,B) is

not allowed (A=B+B). Details are in the SCAMP-5 Reference Manual.

Information for advanced users
1. In contrast to earlier SCAMP implementations, the Scamp5d system instruction set embeds basic

error correction strategies (“delta offsets” etc) in kernel macro instructions. Each kernel instruction

(such as mov, add, div etc.) can therefore comprise several machine-level microinstructions, or

“Instruction Code Words” (ICWs). The analog kernel macro instructions, for example mov (A,B), use

internally a temporary register (NEWS) to perform sign inversion and error correction, and are

recommended to be used in most cases.

2. The instruction set also includes bus transfer microinstructions, such as bus (A,B,C), that are

equivalent to individual register-transfer ICWs (A<-B+C in this case), and can be used to construct

highly optimised code. However, the user needs to manually keep track of the error-correction

schemes. Therefore analog bus transfer microinstructions, and similar, (bus, sq, blur, icw, etc.) are

only recommended for experienced users requiring advanced code optimisations.

3. SCAMP-5 instruction set includes experimental instructions sq, square and mult, providing

arithmetic operations of squaring an analog value, and multiplication of two analog values. These

instructions are executed with relatively low accuracy and high levels of noise.

3.2 Neighbour communication
The processors in the array can communicate with their nearest neighbours, so that data transfers

and arithmetic operations can be carried out between the adjacent processors in the array. This

corresponds to the operations on the arrays shifted by one-pixel in one of the four directions (denoted

as east, west, north, south). For instance, (see Figure 3.1) transfer instruction movx (A, B, south) loads

the register A of one processor with the value held in a register B of its neighbour below (i.e. in the

South direction). If array B stores and image, then this will result in the array A storing an image shifted

by one pixel in the North direction (i.e. up). Boundary pixels are loaded with zero.

5 5 5 5

5 3 3 0

5 3 3 0

5 8 8 5

5 3 3 0

5 3 3 0

5 8 8 5

0 0 0 0

 B A = B(south)

Scamp5d Programming Guide --- WORK IN PROGRESS v0.81

© 2019 by The University of Manchester 5

Figure 3.1: Instruction movx (A,B,south) loads the array from B to A, such that elements of A at location

(x,y) are assigned the corresponding South-neighbour values from B, i.e. A(x,y)=B(x,y-1). Note that this

results in image A shifted by one-pixel up (i.e. the North direction) as compared with image in B.

Neighbour communications can be incorporated into arithmetic operations, for example instruction

addx (A,B,C,south) performs the pixel-wise addition of the image B and image C shifted by one pixel

up, and the result is stored in image A (see Figure 3.2).

5 2 0 0

5 2 0 0

1 1 1 1

1 1 1 1

10 10 10 10

20 20 20 20

10 10 10 10

10 10 10 10

25 22 20 20

15 12 10 10

11 11 11 11

1 1 1 1

 B C A

Figure 3.2: Instruction addx (A,B,C,south) performs operation A(x,y)=B(x,y)+C(x,y+1) on all array

elements in parallel.

Speed-optimised operations mox2x, add2x, sub2x are provided to perform transfers and arithmetics

using second-neighbours (in a 4-connected neighbourhood). This allows diagonal data transfers (e.g.

north + west) or 2 pixels away (e.g. east + east).

3.3 Conditional execution (FLAG)
While all processors in the SIMD array receive the same instruction stream, it is often required to

provide some degree of local autonomy, so that different operations can be performed on different

elements of the array, in data-dependent fashion. For instance, to carry out a rectification operation

(such as used, for instance in a ReLU layer of a neural network) those elements of the array that store

negative values should become zero, while positive values remain unchanged.

Conditional execution is implemented using a local activity FLAG register. This register controls the

execution of analogue instructions in a processors. Those processors in the array that have FLAG=1

execute analog operations, those where FLAG=0 do not execute. In this way, while a single instruction

stream is delivered to all processors, only a subset of the array actually performs the operations,

achieving data-dependent program execution.

Execution of all instructions operating on analog registers is conditional upon the FLAG value.

However, it should be noted that conditional execution of the second-neighbour instructions (mov2x,

add2x, sub2x) is not supported and will lead to erroneous results. Also, the FLAG register status does

not affect the operations on binary registers.

Conditional instruction where (A) sets the local activity flag register FLAG based on analog register

value, pixels where A>0 become enabled (FLAG=1), others become disabled (FLAG=0).

Instruction all() sets FLAG=1 in all pixels.

Conditional instructions are also available to allow conditions based on the sum of analog registers,

e.g. where(A,B) sets FLAG only where A+B>0, as well as binary registers, e.g. where (S1) sets the FLAG

equal to the binary register S1.

Scamp5d Programming Guide --- WORK IN PROGRESS v0.81

© 2019 by The University of Manchester 6

Example 3.1: Rectification

Consider the following scamp kernel:

Listing 3.1. Rectification

1

2

3

4

neg (A, B)

where (A)

 res (B)

all()

The result of executing this sequence of instructions is shown in Figure 3.3. The first instruction

neg (A,B) is negating, i.e. inverting the sign of the value held in register B, and storing it into register

A. The second instruction sets FLAG to 1 only where A is greater than zero (which are here

corresponding to the locations where B was negative), other locations have FLAG=0 Only these

“flagged” pixels will be affected by the next instruction, res (B) which sets register B values to zero. It

can be seen that, as a result, all pixels that had negative values in B get set to zero. Finally, instruction

all() enables all processors in the array (FLAG=1 everywhere), so that following operations can

continue normally.

-7 5 5 -4

-7 6 6 6

-5 -8 6 6

-5 -8 -8 9

7 -5 -5 4

7 -6 -6 -6

5 8 -6 -6

5 8 8 -9

1 0 0 1

1 0 0 0

1 1 0 0

1 1 1 0

0 5 5 0

0 6 6 6

0 0 6 6

0 0 0 9

 B A FLAG B

 neg(A,B) where(A) res(B)

Figure 3.3: Example program calculating rectified value. Initial value held in register B is shown on the

left. Instruction neg (A,B) results in A = - B. After where (A) instruction, the FLAG register is set to 1, or

reset to 0, depending on the sign of the value stored in A. The following instruction res (B) is executed

only at locations where FLAG=1.

Example 3.2: Absolute value

Consider the following scamp kernel:

Listing 3.2. Absolute value

1

2

3

4

neg (B, C)

where (C)

 mov (B, C)

all()

The result is shown in Figure 3.4. The first instruction neg (B,C) is putting the inverted values of C into

B. The second instruction enables only the processors where C was greater than zero. In the enabled

locations, the next instruction, mov (B,C) will copy values from C to B. The overall effect is that B will

contain only positive values, equal to the absolute value of pixels in C. All processors are enabled at

the end using all().

Scamp5d Programming Guide --- WORK IN PROGRESS v0.81

© 2019 by The University of Manchester 7

-7 5 5 -4

-7 6 6 6

-5 -8 6 6

-5 -8 -8 9

7 -5 -5 4

7 -6 -6 -6

5 8 -6 -6

5 8 8 -9

0 1 1 0

0 1 1 1

0 0 1 1

0 0 0 1

7 5 5 4

7 6 6 6

5 8 6 6

5 8 8 9

 C B FLAG B

 neg(B,C) where(C) mov(B,C)

Figure 3.4: Example program calculating absolute value. Original value held in register C is shown on the

left. Instruction neg (B,C) results in B = - C. After where (C) instruction, the FLAG register is set to 1, or

reset to 0, depending on the sign of the value stored in C. The following instruction mov (B,C) is executed

only at locations where FLAG=1.

Note, that absolute value calculation can be achieved executing an instruction abs (C,B), which carries

out an optimised computation of C = |B| in fewer clock cycles than the above program.

3.4 Binary Instructions.
General-purpose digital registers (S0-S6) and special-purpose digital registers (RN,RE,RS,RW,RP,RF)

can store binary data (one bit per array element). The instruction set supports transfers and logic

operations on these binary arrays. Binary instructions mnemonics are written in uppercase, for

example instruction MOV (S0, RE) copies the content of register RE into register S0.

Instructions SET and CLR can be used to set one or several binary register arrays to 1 or 0. Basic logic

operations of NOT, OR, AND, NOR, NAND and XOR are carried out bit-wise on the binary registers (for

example, see Figure 3.5).

0 0 1 0

0 0 1 0

0 0 1 0

0 0 1 0

1 1 1 1

0 0 0 0

1 1 1 1

0 0 0 0

1 1 1 1

0 0 1 0

1 1 1 1

0 0 1 0

 S1 S2 S0

OR =

Figure 3.5. Binary instructions, such as OR (S0,S1,S2) operate element-wise on all array elements. In this

example, S0 = S1 OR S2.

In addition to basic Boolean functions, optimised instructions are provided to implement several other

logic functions, such as implication (IMP) and its inverse (NIMP), a “clear if” function (CLR_IF) and a

multiplexor/selector function (MUX). These are often useful when performing binary manipulations,

their truthtables are shown in Figure 3.6.

Figure 3.6. Truth tables for logic instructions. (a) results of executing AND (Rc,Rb,Ra)

Overall, logic instructions are straightforward to use, but it has to be remembered that some of them

modify registers RF and RM. For instance AND (S0, S1, S2) instruction implements S0 = S1 AND S2, but

also sets RM = NOT (S1), and RF = NOT (S2)

ANDX and NANDX perform logic AND and NAND operations, but they also modify one of the

arguments. These instructions are also 25% faster than AND and NAND instructions.

3.5 Conditional execution of binary operations (RM, RF)
Binary registers can be used as arguments in a conditional instruction, e.g. where(S1), to set/reset the

FLAG, however, the binary operations are not executed conditionally inside the where() statements.

Scamp5d Programming Guide --- WORK IN PROGRESS v0.81

© 2019 by The University of Manchester 8

Binary instructions execute always, on all elements of the binary arrays, irrespective of the FLAG

status.

Register RM is a special register. Writing to this register is gated (i.e. flagged by) register RF. The

elements of the RM array are updated after any of the following binary operations (SET, CLR, MOV,

NOT, NOR, OR) only in the locations where RF=1. Elements of RM where RF=0 remain unaffected. This

is illustrated in Figure 3.7.

Figure 3.7. Illustration of RM operation “flagged” by RF. Instruction OR (RF,S0) implements logic

operation RF = RF OR R0 in pixels where RF=1. RM does not change in pixels where RF=0.

Note that registers RM and RF cannot be used as arguments to all binary instructions, and they are

modified as a by-product of executing many binary instructions, such as AND, NAND, XOR, IMP, MUX

etc. as detailed in the Scamp5 Reference Manual. Therefore the user must be careful when using

these registers for general storage or computation.

The “conditional” operations can be also achieved employing correct Boolean logic operations. For

example, if register S1 contains a mask that determines which elements of the register S0 should be

set to zero, keeping other elements of register S0 unchanged, this can be achieved using the following

Boolean function: S0 = S0 AND (NOT(S1)) as shown in Figure 3.6. This useful logic function is

implemented by the CLR_IF instruction. Similar functionality can be obtained using AND, OR, IMP and

NIMP functions, and this should be generally used if possible, instead of using instructions based on

RM, RF conditional write.

Figure 3.8. Illustration of executing CLR_IF (S0, S1). This implements a logic operation

S0 = S0 AND (NOT (S1)) that can be interpreted as “conditional clearing” of S0 in locations where S1=1.

3.6 Acceleration.
To be written…

3.7 Sensor and I/O
To be written…

4 Important notes
4.1 Numerical Precision of Analog Computing
By convention, the numerical values stored in the analog registers are represented by real numbers in

the range -128 to 127. However, the SCAMP-5 system actually operates with an analog data-path, i.e.

the local memories and arithmetic circuits are implemented using analog circuitry. This has some

implications regarding the numerical precision and the nature of operations. Each transfer and

arithmetic operation will be carried out with a small error value added to the true result of the

operation. Some of this error is seen as systematic inaccuracy (the same for all pixels), some as fixed-

pattern noise (specific to locations in the array), and some as entirely random, non-deterministic noise

(i.e. the error will be slightly different each time). The user should never expect absolute numerical

precision, or deterministic outcome, of any operation on the analog registers.

The actual error/noise levels can be found through experimentation, and are to some extend modelled

in the simulator. Details can be found in the document ‘Understanding Noise and Error of Analogue

Computations on SCAMP-5’. As a rough approximation, it can be thought that the operations on the

analog values are carried out with an accuracy corresponding to about 8-bits digital operations (0.4%

precision), but unlike digital limited precision computations, analog computations exhibit noise, and

error accumulation.

Scamp5d Programming Guide --- WORK IN PROGRESS v0.81

© 2019 by The University of Manchester 9

Transfers, additions, and subtraction operations are less noisy than a division-by-two operation.

Additionally, several variants of a division operation are provided, (div, diva, divq) that can be selected

depending on the required speed, accuracy, and the type of arguments.

Input operations, and output (readout) operations can be more noisy than arithmetic operations. It

should not be assumed that instruction such as scamp_in (A, 45) will actually load a precise value of

45 to the analog register A. The value will be near 45. It should also not be assumed that the pixel

value read-out off-chip as 45 (as seen, for example, in the image displayed in the Scamp Host GUI)

corresponds to 45 being stored in the output register. Multiple sources of input and read-out noise

exist in the system, and the values processed internally are typically more accurate than what might

be seen in the input/output values seen from the outside.

4.2 Memory Volatility
Analog memory is volatile. The analog register values degrade, at a rate of several % per second. This

is because analog numbers are stored as charge on capacitors, and that charge slowly “leaks” away.

These leaks cannot be well controlled, so the level of leak varies from register to register and from

pixel to pixel. Usually this is not a problem for fast frame-rate operation, but it has to be remembered

that long-term storage in analog registers in not possible.

Binary registers are also volatile, but they can be reliably refreshed. This is achieved by periodically

reading them, and writing back the read value. This restores the charge on the capacitor that is

interpreted as the binary value ‘0’ or ‘1’.

4.3 Scamp Simulator Limitations
Scamp Simulator is provided to aid the code development and debugging. It allows to examine the

contents of all registers on the SCAMP chip, stepping through the code, etc. When used in this way, it

is a very helpful tool. However, it is not an exact emulator, it is only an approximation.

1. When using the Simulation configuration, the “M0 code” is compiled for (and runs natively

on) the host processor (e.g. Intel x64). A regular and not-too-fancy C code should work just

fine, but the user needs to be aware of the M0 limitations in terms of available RAM (program

and data memory), lack of the floating-point unit, etc. None of this is simulated.

2. The processors on the SCAMP chip have very unusual design, they employ analog memories

and analog computing circuits in the datapath. These circuits are efficient, but they are also

of limited accuracy and noisy. The Scamp Simulator includes models of noise and analogue

processing errors in the SCAMP chip, however, these only provide an approximation of what

is actually happening in hardware. There is no guarantee that the code that executes well on

the simulator will work on the actual hardware. In particular, any ‘fine tuning’ of the code to

compensate for the analog processing errors, by making minute adjustments to the numerical

values, etc, is a futile exercise. Instead, the code has to be written in such a way, that it is

robust against the analog processing errors. That is a skill that comes with some practice, but

there are some simple rules that definitely need to be followed:

a. Do not store analog register values for a long time (definitely not more than a few

hundred ms). The stored values will ‘leak’. Temporal effects are not simulated

precisely.

b. Do not think that if the simulator shows the error of the addition operation is 0.034

it is actually that. It is only an approximation. The actual values are unknown, and

change in time.

Scamp5d Programming Guide --- WORK IN PROGRESS v0.81

© 2019 by The University of Manchester 10

c. Do not “chain” too many analog operations. A few tens of shifts are fine. A couple of

“compensated” divisions are fine. Beyond that, the analog operation errors will

accumulate. If you discover some amazing error compensation strategy, it is likely that

it is an artefact of the simulation, not the real thing. Verify in hardware.

To help the user to appreciate these issues, the Scamp Simulator contains several levels of

error modelling. From an error-free operation (unrealistic, but sometimes useful to get the

basic algorithm to work), to a pessimistic (exaggerated error and noise) operation, designed

to help the user to spot potential issues. Please consult the ‘Scamp Simulator User Manual’

for a full description of these levels.

5 Basic SCAMP-5 Program
Let’s have a look at a structure of a simple SCAMP-5 program, containing some commonly used

components. The details will be discussed later, however, at this stage it is important to understand

the basic program format, so that we can explore and test the example code.

It is assumed that the reader is familiar with the contents of the ‘Getting Started with Scamp5d’

document, and has successfully installed SCAMP software programming framework. The features of

the Scamp Simulator and Scamp Host GUI are described in separate documentation.

The code of a basic program is shown in Listing 1. Recall, that this program will be compiled and

executed on the M0 core (the controller). The M0 core will then issue instructions to the SCAMP-5

chip, when a SCAMP-5 function or instruction is encountered.

Lines 1-2 declare the scamp5 library and namespace. The M0 programs will use the scamp5 library

functions to communicate with the scamp chip, and other system components. The scamp5 library

defines three main types of functions:

- Vision system functions (vs_) – these are system level functions, that provide overall system

setup, synchronisation and control, including interactions with a host GUI.

- Scamp functions (scamp5_) – these are higher-level functions that execute on the SCAMP-5

chip. Many of these functions involve i/o transfers between the chip and the M0 core or the

external interface, or provide some other often used and/or relatively complex functionality

- Scamp kernels – these are short “programs”, written in the machine-level language of the

SCAMP-5 processor array. The M0 issues these instructions to the SCAMP-5 chip, which

executes the operations. The hardware acceleration is primarily achieved through these

kernels.

Line 5 defines a variable that will be used as a parameter to the SCAMP program, and set via a ‘slider’

control in Scamp Host GUI

Lines 10 and 13 are vs functions needed for system and GUI initialisation. The default initialisations

enable callback procedures to control things such as GUI frame rate control sliders, etc.

Lines 16-19 are vs functions that add two data display windows, and one slider control, to the Scamp

Host GUI. This is implemented by the Scamp5d system sending appropriate messages to the Scamp

Host via the USB interface.

Lines 22-44 contain the main frame loop

Scamp5d Programming Guide --- WORK IN PROGRESS v0.81

© 2019 by The University of Manchester 11

Line 25 contains a vs function call typically required at a start of each frame loop iteration. It provides

frame synchronisation, and other housekeeping tasks (handling GUI events, such as update of slider

variables, frame counting, etc.)

Line 28 is a scamp5 function that loads the image acquired by the sensor into register C. This function

applies a gain to the image acquisition, which in this case is from default variable FRAME_GAIN, which

corresponds to a frame gain slider in the host GUI.

Line 31 is a scamp5 function that loads a value into register E of the processor array. In this case, this

value is a variable corresponding to the slider.

Lines 34-38 contain a SCAMP kernel. The kernel is an inline assembler code, in the machine language

of the SCAMP chip. These instructions will be executed on the SCAMP device. In this example, a

thresholding operation is carried out on the acquired image C, at a level determined by E (which now

contains slider_val), with the result of the operation stored into binary register array S1.

Line 42-43 are scamp5 functions. They read the corresponding analog and binary images from the

SCAMP chip, and send them over the default interface (in this case USB, to be displayed on the

corresponding Scamp Host windows that were created in Lines 16-17).

Scamp5d Programming Guide --- WORK IN PROGRESS v0.81

© 2019 by The University of Manchester 12

Listing 1. Example program

#include <scamp5.hpp>

using namespace SCAMP5_PE;

//variable to hold some program parameter

int slider_val;

int main(){

// initialise the vision system

vs_init();

// initialise standard GUI elements (frame_rate, sensor_gain)

vs_gui_init ();

// add GUI elements: output displays, input slider)

auto display_1 = vs_gui_add_display("hello",0,0);

auto display_2 = vs_gui_add_display("world",0,0);

 //add slider

// main frame loop

while(1){

// frame sync and housekeeping

vs_frame_loop_control ();

// load image from sensor to register C

scamp5_getimage (C, FRAME_GAIN);

// load value from GUI slider to register E

scamp5_in (E, slider_val)

// this kernel performs threshold

scamp5_kernel_begin();

 add (A, C, E);

 where (A);

 mov (S1, FLAG);

 all();

scamp5_kernel_end();

 //output results to GUI

scamp5_output_image(C,display_1);

scamp5_output_image(R5,display_2);

 }

 return 0;

}

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Scamp5d Programming Guide --- WORK IN PROGRESS v0.81

© 2019 by The University of Manchester 13

 Contents (to be written…)

1. SCAMP-5 Arithmetic Operations

- Scale, dynamic range

EXAMPLE NEGATE, DIVIDE

2. Neighjbour communication

EXAMPLE A + B (shifted by 10)

Don’t shift too much

EXAMPLE SOBEL

3. Conditional

FLAG

EXAMPLE ABS

4. SCAMP-5 Logic Operations

Refresh

Conditionals – via R0

Directions …

EXAMPLE ABS

5. Logic neighbout transfers

EXAMPLE DILATE, EORDE

6. Array Operations (Diffuse, Propagate)

DoG EXAMPLE

HOLEFILL EXAMPLE

7. Image acquisition, frame wait, reset

GAIN Example

1000 fps acquire, 10 fps display

8. SCAMP Interactions (sliders etc)

EXAMPLE THRESHOLD

Buttons etc

9. SCAMP I/O modes and Global Operations

Outputs,

scalars, histograms

Global Sum

Global Or

Event Readout

Bounding Box

Subsampled readout

Select

Scamp5d Programming Guide --- WORK IN PROGRESS v0.81

© 2019 by The University of Manchester 14

10. Displays & Palettes

11. Scopes, histograms

12. Inputs, “plotting into array”, load image

13. External Memory

14. GPIO, LEDs

15. Timers stc

16. Simulator

a. Simulating pixel acquisition

b. Load and save files

c. Simulator limitations

17. Analog computing

- Microarchitecture - ICWs

- UNDER THE HOOD – NEWS, TMP….

Code optimisations using bus()

- Scale, dynamic range – detail

- Leakage

- Also digital – refresh

- Other gotcha’s

18. Algorithms

a. ADC & DAC

b. HDR

c. FAST

d. Optic Flow

e. etc…

Version History

Version number Date Author Comments

v 0.81 03/04/2019 P.Dudek work in progress

…

